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We consider here the motion of a gyroframe (a rigid body carrying gyro- 
scopes), whose Point of suspension is being displaced with respect to an 
inertial frame of reference in an arbitrarily prescribed manner. Using 
methods shown in [l 1. we derive the equations of precessional motion 
for the whole system. We demonstrate that under certain conditions the 
equations of motion yield the first integral, which is used to construct 
the Liapunov function and determine in turn the necessary conditions for 
the stability of motion. As an example we derive the equations of pre- 
cessional motion of a horizontal gyrocompass and prove that these equa- 
tions are equivalent to the equations obtained originally by Ishlinskii 

[2 1. 

We determine the conditions for the stability of motion of a hori- 
zontal gyrocompass (when the velocity of the suspension point v and the 
angular rotational velocity w of the trihedron of Darboux are constant). 

1. Let us introduce two coordinate systems, the inertial system with 
the origin at the point 0, and the system 0x1*x2*x3* in translatory 
motion with respect to the inertial system. We shall investigate the 
motion of a system of mass points with respect to these two coordinate 

systems. Let us denote by K the principal vector of the angular momentum 
of our system of mass points about the origin of the inertial reference 

frame 0, , and by K,, ' the principal vector of the angular momentum of our 

system &out thk o&gin of the translated frame 0xl*z2*x3*. 

The equation of the angular dents of our mass points system 

dK/dt = Me can be easily transformed into 

Here Me and Moe are the principal moments about the points 0, and 0, 
respectively, of the external forces acting on the system; M,” is the 
principal moment about the point 0 of the inertia forces caused by the 
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transport acceleration. All the inertia forces are replaced by a single 
effective resultant mw applied at the center of mass of the system (m is 
the mass of the whole system, w is the acceleration of the point 0). 

The kinetic energy of our system can be written in the form 

T = T’ + $1129 + mv.v,’ (1.2) 

In the above equation v is the velocity of the point 0, vc' is the 
velocity of the center of mass of the whole system with respect to the 
moving axes 0xI*x2*x3*; T’ is the kinetic energy of the system. 

We shall consider now the motion of a gyroframe when the motion of 
its suspension point 0 is prescribed. The precessional, or the so-called 
elementary theory of the motion of a gyroframe can be derived by using 
two different methods. The first method (see papers by Ishlinskii [2-511 
consists of using the angular-momentum equation in the form (1.1). The 
precessional theory assumes that at sufficiently high rotational velo- 
cities of the gyroscopes the angular momentum K,’ of the whole system 
(gyroframe with gyroscopes and other bodies) about the moving axes 
O+**X3* equals the geometric sum of the angular momenta of the gyro- 
scopes H. 

I 

(C is the number of gyroscopes) 

Substituting the approximate value of the angular momentum I$’ in 
Equation (1.11, we obtain the equation of precessional motion of the 

gyroframe 
dH 

- = M,e + M,” 
dt (1.3) 

To the above vector equation we must add the equations determining 
the motion of the gyroscopes with respect to the frame. 

In the second method of deriving the precessional equations of motion 
of a gyroframe instead of the angular-momentum equation, we simplify the 
expression for the kinetic energy. The essence of the second method con- 
sists of replacing the kinetic energy of the system with respect to the 
moving axes Ox, *x2 *x3 * by the kinetic energy of the gyroscopes rotating 
about their axes, when the rotational velocities of the gyroscopes are 
sufficiently high (see, for example, [ 2 I). 

2. Let us examine the second method in some detail. Beside the moving 
axes we introduce in addition two more coordinate systems Ox1ox2ox3o and 
Oxlxzx3. The origins of both systems coincide with the suspension point 
0, the system 0x1x2x3 is fixed in the frame and the system OX~~X~“X~~ 
rotates with the prescribed angular velocity o = o,(t) with respect to 
the trihedron 0xl*r2*x3*. Let us denote by oej8 the components of the 
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angular velocity vector oe along the axes x.; by gl, q2, q3 the Eulerian 
angles determining the orientation of the &roframe (the 0x1x2x3-coordi- 
nate system) with respect to the trihedron OX~~X,~X,~ ; by q4, . . . , qn 
the angles determining the orientation of the gyroscopes’ axes with re- 
spect to the gyroframe; by a. the cosine of the angle between the 
vector ij and the axis of thissth gyroscope; by b the cosine of *the 
angle between the axis x.’ and the axis of the st 
rotational angular veloc!ty of a gyroscope; 

I? gyroscope; by 4, the 

of a gyroscope about its axis of synvaetry. 
by C, the moment of inertia 

When the second method is being used, the kinetic energy (1.2) of the 
precessional motion of the system consisting of a gyroframe and gyro- 
scopes is replaced by the expression 

In the above equation ojs and bjs are the known functions of the 
generalized coordinates qi, and aejo are the prescribed functions of the 

time. We shall denote by cdr the rotational angular velocity of the gyro- 
frsme with respect to the trihedron Ox~“x20x30~ The velocity of the 
center of mass vet with respect to the system oX1*x2*z3* equals 

vet = (o,, + w,) x rc’ 

Here rc ’ is the radius vector OC of the center of mass. bression 
(2.1) can be put in the form 

where 

(2.2) 

T1 = mv- (u, x r,‘), To = mv (u, x rc’) + $-mv2 (2.3) 

Let us mention that T, is the linear form of the generalized velo- 

cities il, i2, (i3, and To depends only on the generalized coordinates 

qi and on the time t. 

Taking into consideration that the torques caused by the gyro-motors 
are equilibrated by the resistance forces, we obtain the k first inte- 
grals corresponding to the cyclic coordinates $s 

When constructing the equations of motion of the system it is con- 
venient to eliminate the cyclic coordinates 4, by using the first inte- 
grals (2.4). To achieve that we construct the Routh function within an 
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additive constant, in our case 

R=R,+R,+T,+T, (2.5) 
where 

k n !i 3 

Rl = IX Hs 2 akj, R, = 2 H, 2 bjsw,j’ 
S==l j=l 8=1 j=;l 

(2.6) 

‘lhe equations of the precessional motion of the whole system (gyro- 
frame and the gyroscopes) are 

d aR aR 
-7-- 
dt aq, aqj = Qj (j=1,2,...,n) (2.7) 

where Q. is the generalized force. By (2.5) Equations (2.7) can be put 
in the ) orm 

(2.8) 

Before going any further, let us make two observations. When con- 
structing the sum ~jsij in the expression for the kinetic energy (2.1), 
we consider only those angular velocities ii which are transferred to the 
sth gyroscope, 
to consider the 

and when we calculate the generalized forces Qj we neglect 
inertia force caused by the transport acceleration, be- 

cause the kinetic energy (1.2) or (2.2) refers to the absolute motion. 

3. Assuming that the forces acting on the system are derived from a 
potential, we have 

Qj= -?!$ (I’ = 1, . . * , If) 
3 

(3.1) 

where II is the potential energy. Let also R,, Tl and T, be explicitly 
independent of time. With these assumptions Equation (2.8) yields the 
first integral 

k’ = II - T, - R, = COIISL (3.2) 

easily obtained by multiplying each equation in (2.8) by cj,., summing up 
the products and taking into consideration that R, and T, &re homogene- 
ous linear functions of the generalized velocities, and that II, T, and 
R, do not depend on the velocities pi, 

We shall assume that the displacements of the coordinate system 
OX10XZ0X30 and that the forces acting on the system 
motion described by the equations Qj = 0 (j = 1, 2, 
For such a motion Equations (2.8) become applicable 
tions, and if the function 

*JV=v-V(O) 

are such that the 
. . . ) n) is possible, 
for the perturba- 

(3.3) 

is sign-definite, then the unperturbed precessional motion q. = 0 is 
1 
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stable by the Liapunov criterion. 

4. Let us consider as an example the derivation of the equations of 
motion for a horizontal gyrocompass and of the conditions of its sta- 
bility. The basic scheme of the gyrocompass system can be found in 12 I, 
where the author derives the equations of motion using the equations of 
moments. In our derivations we are using essentially the ssme method as 
inE21. 

lhe earth is assumed to be a perfect sphere and the suspension point 
0 of the gyroframe moves on the earth’s surface. Let us introduce a co- 
ordinate system Ox*y*z* which is in txanslatory motion and whose axes are 
oriented on distant stars, and a geographically oriented system Ocq 5. 
Let U be the earth’s angular velocity, # be the geographical latitude of 
the gyrocompass, V, and VN be respectively the known eastern and northern 
components of the velocity of the suspension point with respect to the 
earth’s surface. The angular velocity of the latitude variation $ and of 
the longitude variation A equal 

where R is the earth’s radius. The angular velocity vector of the lati- 
tude variation is directed west, and the angular velocity vector of the 
longitude variation is parallel to the earth’s axis. 

The angular velocity vector of the rotation of OEq< with respect to 
the star-oriented system is the resultant of the earth’s rotation angular 
velocity vector and af the angular velocity vectors of the latitude vari- 
ation and longitude variation. Its E, 7 and [ components equal 

1Ai >= -&, u,( -Z (0‘ -+ A) CoS(p, Zl- = (U -I- X) sirrrp (4.3) 

The velocity v of the suspension point 0 with respect to the inertial 
reference frame whose origin is at the earth’s center (the acceleration 
of the earth’s center is neglected) is the resultant of the transport 
velocity RU cos 4, directed east along the tangent to a meridian, and 
of the relative velocity whose components are VE, VN, 0. Consequently, 
the velocity v equals (Fig. 1) 

_ - .- _..-___ 
2’ -= I/VK2 + (Vn-+- HI/ COST (4.3) 

Following 12 1 , we introduce a new coordinate system OZ”yoto whose t- 
axis (Fig. 1) coincides with the C-axis, and the x0-axis is along the 
velocity vector v. The y”-axis must then be directed along the resultant 

of uE and un. The angle’6 .between the axes 4 and x0 is given by the 
formula 7_ 

f4.4) 
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Fig. 1. Fig. 2. 

Using Fig. 1 and Formulas (4.1) to (4.41, we calculate the x0-, y*-, 
and to-components of the rotational. angular velocity 00 of the system 
rOy”zo with respect to x*y*z* 

where 

We introduce finally the coordinate system xyz fixed in the gyroframe, 
whose z-axis is parallel to the rotation axes of the gyroscopes’ casings 
(inner gimbal rings), the y-axis makes equal angles with both gyroscopes’ 
axes, consequently the direction of the x-axis is uniquely determined 
(Fig. 2). (Figure 2 is given without explanations, which can be found 
for example in f2 3.1 ‘Ihe iorientationof the gyroframe with respect to 
oX”yozo is determined by the three angles a, 6 snd y (Fig. 3). ‘ihe 
direction Eosines of the angles between Oxyz and Ox”yozo are listed in 
the following table: 

i 
x0 

[ 
3P I 2’ 

X cosa cop-sina sin9 sinr sina cosy+cosa sin fisinr ’ -co@ sinr c4. 7j 

Y -sinacos@ cosacosg sinp 

i cosa sinyj-sina sir@ COST sina siny-cosa six$ cosr co@ cosy 

%e x-, y-, and r-components of the angular velocity vector 05 and 
of the angular velocity vector o, of the gyroframe in rotation with 
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respect to Ox”yoto are 

D.P. bierkin 

o,,=~(sin~CoSr+CoSusinBsinr)--cosBsinr 

0 ey = +-cosacosp +osinfi 

0 ez = +(sinasin~--- cosasinficosr) fwcospcosr 

w r.X = -_aos#3sinr+@cosr, Wr,=osin&++ 

orz = a cos @ cos -1 + B sin 7 

(4.8) 

14.9) 

We need also the y-component of the angular velocity vector of the 
gyroframe’s rotation with respect to the inertial system (the remaining 
components are not needed). 

We have the relation aY = o,,~ + tier, and by (4.8) and (4.9) 

% ~~sin~+~+~cosacos~+osin~ (4.10) 

In order to obtain in the Routh function the expression for R, + R, 
(see, for example, El I and also Formula (2.6)) we must: (1) calculate 

Fig. 3. 

the sums of the projections of 
angular velocities on the axes of 
each gyroscope (excluding the velo- 
city of spin); (2) multiply these 
sums by the angular momenta of the 
corresponding gyroscopes and add 
together these products. 

Applying the above procedure to 
the system which is shown in Fig. 2, 
we obtain 

Rl+Ro=Hl(w, sin&+w, case) f 

-j- HZ (- w, sin e + oy cos E) 

Assuming that angular momenta of 
the two gyroscopes equal each other 
(n, = H, = H; an angular momentum 

in [ 2 1 is denoted by B), and by (4.101, we obtain 

RI+ Ro = 2Hcos c(&,sinfi +~++cosacos~ +wsinp ) 

Hence 

R1 = 2H cos E f& sin p + i), Ro= 2H‘ cos E (f cos a cos f3 i- o Sin 6) (4.11) 
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We are going to calculate now T, and T, by Formulas (2.3). ‘Ike x0 -, 

YO- and zO-components of the velocity vector v of the suspension point 
equal 

vx 0X-2, , % ’ “r=O % ozzz 0 

The x-, y-, and r-components of the vector v are found by Table (4.7) 
and equal 

v,= u(cosacosr-sinasiugsinr), v,=----sinacosp 

v, = v (cos a sin r+ sin a sin flcos r) (4.12) 

The center of gravity of the whole system is on the x-axis at the 
distance 1 below the suspension point. Therefore, the x-, y-, and z- 
components of the vector F,’ are 

Xc = 0, $k = 0, I, = -1 (4.13 

Performing multiplications as showu previously in (2.31, and by (4.81, 
(4.9), (4.121, and (4.131, we obtain 

TZ = 7&v [(sin a sin r - cos a sin pcos r) a - sin a cos ficos ~0 - 

- (cos a cos y - sin a sin @sin r) i1 

To = f rnv2 + dov (sin a sin r - cosa sina COST) - 

We shall calculate now the generalized forces. The 
the action of the gravity force F directed toward the 
along the earth’s radius. The potential energy due to 
where 5 is the coordinate of the center of gravity of 
all the bodies attached to it. Py bation (4.13) and 
obtain 

n1= - Flcosfj cos y 

A gyroframe has an internal device which generates 

(4.14) 

77tl~cospcos y 

gyroframe is under 
earth’s center 
F equals II, = F<, 
the gyroframe with 
by Table (4.7) we 

(4.15) 

the moment N(C) 
about the rotation axes of the gyroscopes’ casings. If we neglect all 
other forces except the ones under consideration, we obtain the follow- 
ing generalized forces for our system: 

&=_2!!+0, Qa= -$$= - Ftsinficosy 
(4.16) 

a,=--T- - Fbcos@ silly, Qc = - N (4 

Using Expressions (2.8) for the angles a, /3, y, and C, and by (4.111, 

(4.141, and (4.16), we obtain the equations of motion for our system 
(the right members of the first three equations can be obtained as the 
sum of the moments of the gravity force F and of the resultant of 
inerti,a forces mu about the z,,-, x’- and y-axes (Fig. 3)): 
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(4.17) 

-g (2H cos E) sin@ + Uycos e.cos@fJ 4 2Hcos e-+sin acosfi = 

=.-- ml$(sinasinr - cos a-sing cos r) + 7nlov (cos a sin r + 

+ sin asinfi COST) 

-22Hcoss &OS@ 
i 

--$cosasin~+wC0sflj= tnl~si~a~~~gcOs~-- 

- ~l~~cosu~os~ cosy- F- n$- 
C i 

lsinficosr 

-$-2HcOs E = d~(cosacosy- sinasin@ siny) -+ 

+ mloc (sin a cosy + cosasing sinyf -(F - ~~~~~~~~ sia y 

2Hsin e(asinp +++ +-cosacos~ +asinp) = -N(E) 

Equations (4.17) am equivalent to the equations (40) in [ 2 1 which 
were obtained by a different procedure. Indeed, the second and the 
fourth equations of the system (40) in I2 1 coincide with the third and 
the fourth equations of (4.17). In order to obtain the first equation of 
(40), we reduce the first equation of (4.17) by the third equation of 
(4.17) to the form 

then we multiply this equation by sin y and multiply the second equation 
(4.17) by cos y and add the two products. The third equation of (40) can 
be easily obtained by some other linear combinations of equations in 
(4. l?). 

5. Our ~rofra~ becomes a horizontal gyrocompass if we select the 
moment ~(~) permitting the motion determined by a = f3 = y = 0, that is 
such a motion when the equatorial plane of the gyroframe C&z remains 
all the time horizontal ~~rohorizon), and the y-axis points north with- 
in a course correction angles 6 (gyrocompass). Substituting the above 
values for the angles a, /3 and y in Equations C4.17), we obtain 

2H cos E * w = l/dOV, 2N sin E + = - N (&) 

(CM.. r”lf 
_- 

~(&~ = -$ cos E sin E 

ff the above conditions are satisfied and if at the initial instant 
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of time a = /I = y = 0, then the gyrofrsme will be in equilibrium rela- 
tive to Ox”yozo showing all the time both north and the local vertical. 

6. We shall investigate now the stability of motion, assuming that 
the functions R,, T,, and T, do not depend explicitly on the time (this 
is equivalent to the assumption that u and o are constants). Let co be 
the value of the angle E at which the first condition (5.1) is exactly 
satisfied: 

2H cos EQ = mlv (6.4) 

Let us introduce through the equation 

&=&0+6 

the new angle 8. The generalized force - N(E) will be conservative and 
its potential energy will be 

rrz =\N(s)de ==-g co9 2E 
, 

Using the potential energy of the force F (4.15), we find the 
potential energy II of the whole system 

Il = - Flcos~cos~ --I_&cos2~ (6.3) 

(f.2) 

Under these ass~tions the first integral (3.2) exists and in our 
case (see (4.111, (4.14) and (6.3)) it has the form 

-&ME 2 (0 + 8)-+?nv2 - 

- mlyv - (sin a sin7 - cos a sinp cos r) - 2Hcos (Eo + 6) X 

X (+ cos a cos p t 0 sill p) 
/ (6.4) 

We consider the difference Y - V(O) and expand it in power series of 
a ion yin:, Y and 6. rsY Equ t (6.1) and after certain transformations we 

- 2movPr + 2~nwv tan s@B $- . . . 
I 

(6.5) 

The dots which follow the last term indicate higher-order terms which 
were neglected. 

Let us take the quadratic form inside the brackets and apply to it 
the criterion of Sylvester. We find that if the condition 

F--mm- mRo2 > 0 (6.6) 

is satisfied, then for sufficiently small values of a, p, y and 6 
the function W= V- V(O) is positive-definite, Its derivative, on the 
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strength of the perturbed equations, equals zero (W = constant), hence, 
by Liapunov’ s theorem, the unperturbed motion of the 
compass a = /3 = y = 6 = 0 is stable. 

[2 
Let us examine quickly the condition (6.6). If we 
I, that 

assume, following 

is approximately satisfied, then the inequality will take the form 

where v is the 

7. We shall 

horizontal gyro- 

frequency corresponding to a period of Schuler [ 6 1 . 

now take into account the resistance forces. If we do 
that we have instead of the integral (6.5) 

-g (V - V,) = - ( aa -j- b@ + ci2 + dd2 

where a, b, c and d are arbitrarily small constants which characterize 
the dissipative forces. 

When o < V, then the unperturbed motion a = /3 = y = 8 = 0 is asymp- 
totically stable, and when o > v then the function V- V. can take on 
negative values, and the motion is unstable. If we take into account re- 
sistance forces it every part of the system, then, with all other 
assumptions, the inequality o< v is not only sufficient but also the 
necessary condition of stability of motion of a horizontal gyrocompass. 
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